
JYEBAO www.jyebao.com.tw

AD-B8B8-BF

BNC Jack to BNC Jack Bulkhead, IP67 Mated; 6GHz VSWR 1.2; 12GHz VSWR 1.3 **50**Ω

MOUNTING HOLE:

Parts	Material	Plating (Micro-inch)
Contact Pin	Phosphor Bronze	Gold 4 Over Nickel-Phosphorus Alloy 80 Over Copper 20
Nut Hex	Brass	Tin-Zinc-Copper-Alloy 100 Over Copper 50
Washer	Brass	Tin-Zinc-Copper-Alloy 100 Over Copper 50
Gasket	Silicone	
Insulator	Teflon	
Body	Brass	Tin-Zinc-Copper-Alloy 100 Over Copper 50

Weight: 21.11 g

This part number complies with RoHS.

Notice: JYEBAO reserves the right to make modifications deemed appropriate.

JYEBAO www.jyebao.com.tw

BNC Jack to BNC Jack Bulkhead, AD-B8B8-BF

IP67 Mated; 6GHz VSWR 1.2; 12GHz VSWR 1.3

Interface

Standard MIL-STD-348B

Electrical Data

50Ω Impedance

DC to 12GHz Frequency Range

 \leq 1.2 (6GHz); \leq 1.3 (12GHz) **VSWR**

500 V rms

Insertion Loss $\leq 0.06 \text{ x } \sqrt{\text{f(GHz) dB}}$

Insulation Resistance \geq 5000M Ω Dielectric Withstanding Voltage (at sea level) 1500 V rms

Working Voltage (at sea level)

Mechanical Data

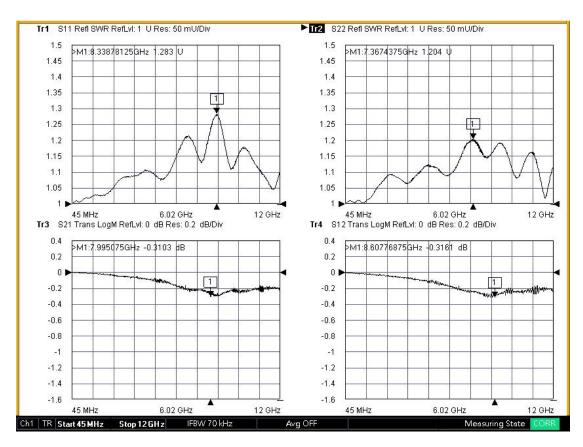
Recommended Coupling Nut Torque 0.6 to 2.5 in-lbs

Contact Captivation-axial \geq 6.1 lbs **Durability** (mating) ≥500

Environmental Data

-65°C to +165°C Temperature Range

Thermal Shock MIL-STD-202, Method 107, Condition B


MIL-STD-202, Method 206 Moisture Resistance

MIL-STD-202, Method 101, Condition B Corrosion

RoHS Compliant

Notice: JYEBAO reserves the right to make modifications deemed appropriate.

AD-B8B8-BF

Note: S11/S12/S21/S22 plots shown represent IL and VSWR of two adaptors tested. To extract IL of a single adaptor divide IL measured by two.